NANOBIOENGINEERING ENABLED SENSING OF CURRENT AND EMERGING PANDEMIC THREATS

The world is emerging from the darkest days of the COVID-19 pandemic. This pandemic, caused by the global spread of the SARS-CoV-2 virus, has illustrated the poor performance of existing monitoring approaches whose aim is to quantify the environmental aspects of such dissemination. However, recent advances in nanotechnology and biotechnology enable the development of novel alternatives that are more sensitive and potentially more cost-effective than existing approaches.

This presentation will present work conducted to design and test plasmonic and nanopore-based platforms for the detection of current (SARS-CoV-2) and emerging (influenza and antimicrobial resistant organisms) pandemic threats in both water and air.

Dr. Peter J. Vikesland is the Nick Prillaman Professor of Civil and Environmental Engineering at Virginia Tech. He received his B.A. in Chemistry from Grinnell College in 1993 and M.S. and Ph.D. in Civil and Environmental Engineering from the University of Iowa in 1995 and 1998. He is a past President of the Association of Environmental Engineering and Science Professors (AEESP), a U.S. NSF CAREER awardee, the recipient of the AEESP 2018 Walter Weber Research Innovation Award, and Editor-in-Chief of Environmental Science: Nano.

Dr. Peter Vikesland
Virginia Tech

Wednesday, December 13
1:00 PM - 2:20 PM
Tiernan Lecture Hall I