Alexei Khalizov

Contact Info

Title: Assistant Professor
Email: alexei.khalizov@njit.edu
Office: 356 Tiernan Hall
Phone: 973-596-3583
Dept: Chemistry and Environmental Science
Webpage: http://web.njit.edu/~khalizov/

Academic Interests: atmospheric chemistry, environmental chemistry, air pollution, aerosols, soot, mercury

Two graduate RA positions in Atmospheric Chemistry

The Khalizov group has two RA openings, beginning in fall 2016. The first position is to investigate the relationship between morphology and optical properties of atmospheric soot aggregates. The second position focuses on gas-phase and heterogeneous reaction mechanisms involving atmospheric mercury.

web.njit.edu/~khalizov/PhD_opening.htm

About me

I am a physical chemist who has been engaged in the atmospheric chemistry and physics research since 1999. The central focus of my studies is to understand the chemical transformations and environmental impacts of atmospheric pollutants, including aerosol nanoparticles and mercury. Research into these topics is attractive from a fundamental scientific standpoint and helpful in developing measures to reduce pollution. 

Education

  • PhD Physical Chemistry, 1997, Ufa Research Center of the Russian Academy of Sciences
  • BS Chemistry (honors), 1994, Bashkir State University, Russia

Professional Experience

  • Assistant Professor, 2013/08-present, Department of Chemistry and Environmental Science, New Jersey Institute of Technology
  • Assistant Research Scientist, 2005/07–2013/07, Department of Atmospheric Sciences, Texas A&M University
  • Research Associate, 2002/10–2005/06, Department of Chemistry, University of Waterloo, ON, Canada
  • NATO-NSERC Postdoctoral fellow, 1999/10–2002/08, Department of Chemistry, McGill University, Montréal, QC, Canada
  • Research Scientist, 1997/12–1999/09, Institute of Organic Chemistry, Ufa Research Center of the Russian Academy of Sciences, Ufa, Russia

Honors and awards

  • 2016: College of Science and Liberal Arts Rising Star Research Award
  • 2016: NSF CAREER
  • 2012: Research Productivity Award, Department of Atmospheric Sciences, Texas A&M University
  • 2012: Dean´s Distinguished Achievement Award, College of Geosciences, Texas A&M University
  • 2000-2002: NATO-NSERC Science Fellowship, McGill University, Montreal, Canada
  • 1996 and 1997: International Soros Science Educational Program Scholarship, Ufa Research Center of the Russian Academy of Sciences
  • 1996: Scholarship of the Government of Republic Bashkortostan, Ufa Research Center of the Russian Academy of Sciences

Funding

NJIT

  • 2016: NJIT Faculty Seed Initiative – $10,000. “What Causes Restructuring of Soot Nanoparticle Aggregates?”. PI: Gennady Gor, Co-PI: Alexei Khalizov
  • 2016: NSF CAREER – $666,899. "Molecular Mechanism of Atmospheric Mercury through Speciation-Resolved Experiments". PI: Alexei Khalizov 
  • 2015: NSF – $395,540. “Collaborative Research: Kinetics and Mechanism of Restructuring of Atmospheric Soot and Associated Impact on Light Absorption”. PI: Alexei Khalizov, co-PI: Chong Qiu (University of North Alabama)
  • 2014: NJIT Faculty Seed Initiative – $7,500. “A novel encapsulation approach for chemical analysis of neutral atmospheric clusters”. PI: Alexei Khalizov
  • 2015: BNL/CFN - shared facility access. "The Rate of Restructuring of Soot Nanoparticle Aggregates". PI: Alexei Khalizov

Texas A&M

  • 2012: Texas Air Research Center (TARC) – $22,271. “Implementation of Particle Size Magnification for analysis of sub-4 nm nanoparticles and secondary organic aerosols”. PI: Alexei Khalizov, co-PI: Renyi Zhang
  • 2010: TARC – $20,000. “On-line chemical analysis of ambient organic aerosols – year 2”. PI: Alexei Khalizov, co-PI: Renyi Zhang
  • 2009: TARC – $38,000. “On-line chemical analysis of ambient organic aerosols”. PI: Alexei Khalizov, co-PI: Renyi Zhang
  • 2009: NSF – $597,358. “Aerosol Growth and Chemical Compositions from Heterogeneous Processing of Organic Compounds”. PI: Renyi Zhang, co-PIs: Alexei Khalizov and Brian Connell
  • 2009: NSF 2009 – $330,000. “Generation, Characterization, and Atmospheric Aging of Soot Particles from Diesel Combustion”. PI: Renyi Zhang, co-PIs: Alexei Khalizov and Eric Petersen.
  • 2008: TARC – $25,000. “An integrated experimental and modeling study for improving mercury chemical mechanism in atmospheric mercury models – year 2”. PIs: Jerry Lin (Lamar University) and Alexei Khalizov (Texas A&M University)
  • 2007: TARC – $44,385. “An integrated experimental and modeling study for improving mercury chemical mechanism in atmospheric mercury models”. PIs: Jerry Lin (Lamar University) and Alexei Khalizov (Texas A&M University), co-PI: Renyi Zhang (Texas A&M University)

 

Service

Outside NJIT

  • Proposal reviewer for ACS-PRF, NSF, EPA, DOE, and Australian Antarctic Division
  • Manuscript reviewer for Nature, Nature - Physics, Journal of Geophysical Research - Atmospheres, Environmental Science and Technology, Journal of Physical Chemistry A, Atmospheric Chemistry and Physics, Aerosol Science and Technology, Atmospheric Environment, Journal of Aerosol Science, Atmospheric Research, RSC Advances, Measurement, Journal of Environmental Engineering, International Journal of Chemical Kinetics, RCS Chemical Society Reviews, and Physical Chemistry Chemical Physics
  • Editorial board member for Scientific Reports (Nature Publishing Group) 

NJIT

  • Research Center Review Committee
  • Committee on Information Technology, Libraries, and Resources

Department

  • Graduate admissions committee 

Website

http://web.njit.edu/~khalizov/

Courses 

CHEM360: Environmental Chemistry I

 

Transformations and Impacts of Atmospheric Aerosols

Atmospheric aerosols originate from two major sources: direct particle emissions and gas-to-particle conversion of chemicals produced from atmospheric gas-phase oxidation. Increased aerosol loading of the atmosphere has negative impacts on air quality and human health and contributes to local and global climate change. Presently, the chemical and physical mechanisms responsible for the transformation of aerosol particles are not well understood. Impacts of aerosols on the environment and human health are poorly quantified, as well.

Our research aims to understand the chemical and physical mechanisms responsible for the transformation of atmospheric aerosols as well as associated impacts of aerosols on climate and human health. Major focus areas:

  • Morphology and optical properties of soot nanoparticle agglomerates produced from combustion
  • Experimental studies of gas-surface interactions involving organic and combustion soot aerosols
  • Development of hyphenated mass spectrometry instrumentation for chemical analysis of aerosol nanoparticles and their gas-phase precursors
  • Field measurements of atmospheric aerosols

Cycling of Atmospheric Mercury

Mercury is a persistent, bioaccumulative pollutant. A large fraction of atmospheric mercury is emitted in elemental form (Hg0) by coal-fired power plants. Oxidation of Hg0 followed by atmospheric deposition is the primary cause of mercury contamination of the aquatic environment. Current knowledge of the chemical processes that convert atmospheric mercury from elemental to oxidized state is highly uncertain. Furthermore, molecular identities of oxidized mercury species are largely unknown.

The goal of this project is to understand the chemical speciation of the atmospheric oxidized mercury and elucidate the role of gas-phase and surface reactions in the formation of gaseous oxidized mercury (GOM) and particle bound mercury (PBM). Major focus areas:

  • Experimental studies of gas-phase mercury oxidation intermediates and uptake of oxidize mercury species on surfaces
  • Research into ion-molecule chemistry of oxidized mercury species for developing direct detection of oxidized mercury in the atmosphere by chemical ionization mass spectrometry
  • Field measurements of atmospheric oxidized mercury

This project will help to resolve an ongoing debate about the relative importance of different mercury transformation pathways in the atmosphere. An updated mercury chemical mechanisms in mercury transport and deposition models will help to understand better mercury methylation and bioaccumulation.

Research group

Current Members

PhD students

  • Chao Chen (Nanjing Institute of Information Science and Technology)
  • Matthew Cooper (NJIT, Applied Physics)

Undergraduate students

  • Dawid Lazar (NJIT, Chemical Engineering)
  • Nicholas Gorlewski (NJIT, Chemistry)

High school students

  •  

Visiting Professor

  • Dr. Chong Qiu

Past members

PhD students

  • Xiaolong Fan (Nanjing Institute of Information Science and Technology), 2014-2015
  • Qize Zhang (NJIT, Chemistry), 2014-2016

Master project

  • Adil Malik (NJIT, Chemistry), 2014

OPT training

  • Xuanming Zhang (NJIT, Civil and Environmental Engineering), 2014
  • Qize Zhang (NJIT, Chemistry), 2014

Undergraduate students

  • Tasneem Shaltout (NJIT, Honors College, Biochemistry, Provost Undergraduate Summer Scholarship), 2016
  • Prarthana Rajai (NJIT, Honors College, Chemical Engineering), 2016
  • Kevin Suter (NJIT, Mechanical Engineering), 2015
  • Ross Cohen (NJIT, Physics), 2014-2015
  • Ali Sajat Asani (NJIT, Chemistry), 2014
  • Nevin Mathew (NJIT, Chemistry), 2014
  • Tarek Adam (NJIT, Chemistry), 2014
  • Joseph Dawson (University of North Alabama), 2014

High school students

  • Kemal Aziz (Staten Island Technical High School), 2015-2016
  • Jakub Goclon (Staten Island Technical High School), 2015-2016
  • Catherine McNamara (Bergen County Technical High School), 2016
  • Abraham Kupperman (Bergen County Technical High School), 2016
  • Jaime Mendoza (Union City High School), 2016  
  • Andrea Hammond (North Star Academy), 2015-2016
  • Shaima Parveen (Livingston High School), 2015
  • Jenni Kustanovich (Tenafly High School), 2015
  • Neida Rios (Union City High School), 2015
  • Andrew Goldman (Livingston High School), 2014
  • Julie McEldoon (Livingston High School), 2014
  • Thomas Eisenberg (Tenafly High School), 2014

Publications

A total citation over 2000 and an h-index of 22

  1. Chen, C., X. Fan, T. Shaltout, C. Qiu, Y. Ma, A. Goldman, and A. F. Khalizov, An unexpected restructuring of combustion soot aggregates by subnanometer coatings of polycyclic aromatic hydrocarbons, Geophys. Res. Letts., 43(20), 11,080-011,088, 2016, 10.1002/2016GL070877.
  2. Zheng, J., Y. Ma, M. Chen, Q. Zhang, L. Wang, A. F. Khalizov, L. Yao, Z. Wang, X. Wang, and L. Chen, ‘Measurement of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry’ (2015), Atmos. Environ., 102, 249-259.
  3. Qiu, C.; Khalizov, A. F.; Hogan, B.; Petersen, E. L.; Zhang, R., ‘High Sensitivity of Diesel Soot Morphological and Optical Properties to Combustion Temperature in a Shock Tube’ (2014), Environ. Sci. Technol., 48 (11), 6444-6452.
  4. Yao, L., Y. Ma, L. Wang, J. Zheng, A. Khalizov, M. Chen, Y. Zhou, L. Qi, and F. Cui, ‘Role of stabilized Criegee Intermediate in secondary organic aerosol formation from the ozonolysis of α-cedrene’ (2014), Atmos. Environ., 94, 448-457<
  5. Yan Ma, Sarah D. Brooks, German Vidaurre, Alexei F. Khalizov, Lin Wang, Jun Zheng, and Renyi Zhang. ‘Rapid modification of cloud-nucleating ability of aerosols by biogenic emissions’ (2013), Geophysical Research Letters, 40, 1–5, doi:10.1002/2013GL057895
  6. Y. Wang, A. F. Khalizov, and R. Zhang. ‘New Directions: Light Absorbing Aerosols and Their Atmospheric Impacts’ (2013) Atmospheric Environment, 81, 713-715
  7. Misti E. Levy, Renyi Zhang, Alexei F. Khalizov, Jun Zheng, Don R. Collins, Crystal R. Glen, Xiao–Ying Yu, Winston Luke, John T. Jayne, Eduardo Olaguer. ‘Measurements of Submicron Aerosols in Houston, Texas during the 2009 SHARP Field Campaign’ (2013) Journal of Geophysical Research – Atmospheres, 118(18), 10,518-510,534
  8. A. F. Khalizov, Y. Lin, C. Qiu, S. Guo, D. Collins, and R. Zhang. ‘The role of OH-initiated oxidation of isoprene in aging of combustion soot’ (2013) Environmental Science and Technology, 47, 2254−2263
  9. Qiu, C., A. F. Khalizov, and R. Zhang. ‘Soot Aging from OH-Initiated Oxidation of Toluene’ (2012) Environmental Science and Technology, 46 (17), 9464-9472, 10.1021/es301883y
  10. A.F. Khalizov, B. Hogan, C. Qiu, E. Petersen, and R. Zhang. ‘Characterization of soot aerosol produced from combustion of propane in a shock tube’ (2012), Aerosol Science and Technology, 46, 925–936
  11. V. Lal, A.F. Khalizov, Y. Lin, M.D. Galvan, B.T. Connell, and R. Zhang. ‘Heterogeneous reactions of epoxides in acidic media’ (2012), Journal of Physical Chemistry A, 116(24), 6078–6090, 10.1021/jp2112704
  12. R. Zhang, A. F. Khalizov, L. Wang, M. Hu, and W. Xu. ‘Nucleation and growth of nanoparticles in the atmosphere’ (2012), Chemical Reviews, 112(3), 1957-2011, 2012, 10.1021/cr2001756.
  13. L. Wang, W. Xu, A. F. Khalizov, R. Zhang, and J. Zheng. ‘Laboratory Investigation on the Role of Organics in Atmospheric Nanoparticle Growth’ (2011), Journal of Physical Chemistry A, 115(32), 8940-8947, 10.1021/jp1121855
  14. C. Qiu, L. Wang, V. Lal, A.F. Khalizov, and R. Zhang. ‘Heterogeneous Chemistry of Alkylamines on Ammonium Sulfate and Ammonium Bisulfate’ (2011), Environmental Science and Technology, 45(11), 4748-4755, 10.1021/es1043112
  15. T. Kuhn, M. E. Earle, A. F. Khalizov, and J. J. Sloan. ‘Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets’ (2011), Atmospheric Chemistry and Physics, 11, 2853-2861
  16. J. Zheng, A. F. Khalizov, L. Wang, and R. Zhang. ‘Atmospheric Pressure-Ion Drift Chemical Ionization Mass Spectrometry for Detection of Trace Gas Species’ (2010), Analytical Chemistry, 82, 7302–7308, 10.1021/ac101253n
  17. A.F. Khalizov, M. Cruz-Quinones and R. Zhang. ‘Heterogeneous Reaction of NO2 on Fresh and Coated Soot Surfaces’, (2010) Journal of Physical Chemistry A, 114(28), 7516–7524, 10.1021/jp1021938
  18. L. Wang, A. F. Khalizov, J. Zheng, and R. Zhang. ‘Role of Heterogeneous Reactions of Organics in Atmospheric Nanoparticle Growth’ (2010), Nature – Geoscience, 3(4), 238-242, doi:10.1038/ngeo778
  19. L. Wang, V. Lal, A.F. Khalizov, and R. Zhang. ‘Heterogeneous Chemistry of Alkylamines with Sulfuric Acid: Implications for Atmospheric Formation of Alkylaminium Sulfates’ (2010), Environmental Science and Technology, 44(7), 2461-2465, 10.1021/es9036868
  20. M. E. Earle, T. Kuhn, A. F. Khalizov, and J. J. Sloan. ‘Volume Nucleation Rates for Homogeneous Freezing in Supercooled Water Microdroplets: Results from a Combined Experimental and Modelling Approach’ (2010), Atmospheric Chemistry and Physics, 10, 7945-7961
  21. R. Zhang, L. Wang, A. F. Khalizov, J. Zhao, J. Zheng, R. McGraw, L. Molina, and M. Molina. ‘Formation of Nano-Sized Particles of Blue Haze Enhanced by Anthropogenic Pollution’ (2009), Proceedings of the National Academy of Science USA, 106(42), 17650-17654, 10.1073/pnas.0910125106
  22. H. Xue, A.F. Khalizov, L. Wang, J. Zheng, and R. Zhang, ‘Effect of dicarboxylic acid coatings on the optical properties of soot’ (2009) Physical Chemistry – Chemical Physics, (36),7869-7875, DOI:10.1039/B904129J
  23. H. Xue, A.F. Khalizov, L. Wang, J. Zheng, and R. Zhang, ‘Effect of dicarboxylic acid coatings on the mass-mobility relationship of soot particles’ (2009) Environmental Science and Technology, 43(8), 2787-2792
  24. J. Pagels, A. F. Khalizov, P. McMurry and R. Zhang. ‘Processing of Soot by Controlled Sulphuric Acid and Water Condensation – Mass and Mobility Relationship’, (2009) Aerosol Science and Technology, 43(7), 629-640
  25. A. F. Khalizov, R. Zhang, D. Zhang, H. Xue, J. Pagels and P. McMurry. ‘Formation of highly hygroscopic soot aerosol upon internal mixing with sulfuric acid vapor’, (2009) Journal of Geophysical Research – Atmospheres, 114, D010595
  26. A.F. Khalizov, H. Xue, L. Wang, J. Zheng, and R. Zhang. ‘Enhanced light absorption and scattering by carbon soot aerosol internally mixed with sulfuric acid’, (2009) Journal of Physical Chemistry A, 113(6), 1066-1074
  27. J. Zhao, A. F. Khalizov, R. Zhang and R. McGraw. ‘Hydrogen Bonding Interaction in Molecular Complexes and Clusters of Aerosol Nucleation Precursors’, (2009) Journal of Physical Chemistry A, 113(4), 680-689
  28. R. Zhang, A.F. Khalizov, J. Pagels, D. Zhang, H. Xue, and P.H. McMurry. ‘Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing’, (2008) Proceedings of the National Academy of Science USA, 105(30), 10291-10296
  29. A.Y. Zasetsky, M.E. Earle, B. Cosic, R., Schiwon, I.A. Grishin, R. McPhail, R.G. Pancescu, J. Najera, A.F. Khalizov, K.B. Cook, and J.J. Sloan. ‘Retrieval of Aerosol Physical and Chemical Properties from Mid-Infrared Extinction Spectra’, (2007) Journal of Quantitative Spectroscopy and Radiative Transfer, 107(2), 294-305
  30. A. M. Diaz, M. G. Zolotukhin, S. Fomine, R. Salcedo, O. Manero, G. Cedillo, V. M. Velasco, M. T. Guzman, D. Fritsch and A. F. Khalizov, "A novel, one-pot synthesis of novel 3F, 5F, and 8F aromatic polymers", (2007), Macromolecular Rapid Communications, 28(2), 183-187.
  31. A. F. Khalizov, M. E. Earle, W. J.W. Johnson, G. D. Stubley and J. J. Sloan, ‘Development and characterization of a laminar aerosol flow tube’, (2006), Review of Scientific Instruments, 77, 033102
  32. A. F. Khalizov, M. E. Earle, W. J.W. Johnson, G. D. Stubley and J. J. Sloan, ‘Modeling of flow dynamics in laminar aerosol flow tubes’, (2006) Journal of Aerosol Science, 37(10), 1174
  33. M. G. Zolotukhin, S. Fomine, L. M. Lazo, R. Salcedo, L. E. Sansores, G. G. Cedillo, H. M. Colquhoun, J. M. Fernandez-G., A. F. Khalizov, ‘Superacid-Catalyzed Polycondensation of Acenaphthenequinone with Aromatic Hydrocarbons’, (2005) Macromolecules, 38(14), 6005
  34. A. Y. Zasetsky, A. F. Khalizov, M. E. Earle, J. J. Sloan. ‘Frequency Dependent Complex Refractive Indices of Supercooled Liquid Water and Ice Determined from Aerosol Extinction Spectra’, (2005) Journal of Physical Chemistry A, 109(14), 2760
  35. A. Y. Zasetsky, A. F. Khalizov, J. J. Sloan (2004). ‘Characterization of Atmospheric Aerosols from Infrared Measurements: Simulations, Testing, and Applications’, Applied Optics, 43(29), 5503
  36. A. Y. Zasetsky, A. F. Khalizov, J. J. Sloan (2004). ‘Local order and dynamics in supercooled water: A study by IR spectroscopy and molecular dynamic simulations’, Journal of Chemical Physics, 121(14), 6941
  37. A. F. Khalizov, B. Viswanathan, P. Larregaray and P. A. Ariya (2003). ‘A Theoretical Study on the Reactions of Hg with Halogens: Atmospheric Implications.’ Journal of Physical Chemistry A, 107(33), 6360
  38. P. A. Ariya, A. F. Khalizov, and A. Gidas, ‘Reaction of Gaseous Mercury with Atomic and Molecular Halogens: Kinetics, Product Studies, and Atmospheric Implications’, (2002) Journal of Physical Chemistry A, 106(32), 7310
  39. A. F. Khalizov and P. A. Ariya, ‘Stability of XSO2 (X=F,Cl, and Br) radical: impact of the basis set on X–S bonding energy in ab initio and DFT calculations’ (2001) Chemical Physics Letters, 350 (1-2), 173
  40. S. L. Khursan, A. F. Khalizov, E. V. Avzyanova, M. Z. Yakupov, V. V. Shereshovets. ‘The yield of singlet oxygen in thermal decomposition of hydrotrioxides’, (2001) Russian Journal of Physical Chemistry, 75, 1107.
  41. A. F. Khalizov, S. L. Khursan,V. V. Shereshovets. ‘Free-radical chain decomposition of ozone initiated by di(tert-butyl) trioxide’, (2001) Russian Chemical Bulletin, 50, 63.
  42. I. M. Ganiev, Q. K. Timerghazin, A. F. Khalizov, V. V. Shereshovets, A. I. Grigor´ev,G. A. Tolstikov. ‘Complex of chlorine dioxide with TEMPO and its conversion into oxoammonium salt’, (2001) Journal of Physical Organic Chemistry, 14, 38.
  43. Y. S. Chertova, E. V. Avzyanova, K. K. Timergazin, A. F. Khalizov, V. V. Shereshovets, U. B. Imashev. ‘The formation of singlet molecular oxygen in the interaction of chlorine dioxide with ozone’, (2001) Russian Journal of Physical Chemistry, 74, S473.
  44. G. M. Abushakhmina, A. F. Khalizov, S. S. Zlotskii, V. V. Shereshovets, U. B. Imashev, ‘Kinetics and products of oxidation of 2-isopropyl-1.3-dioxolane by chlorine dioxide’, (2000) Reaction Kinetics & Catalysis Letters, 70 (1), 177
  45. E. V. Avzyanova, Q. K. Timerghazin, A. F. Khalizov, S. L. Khursan, L. V. Spirikhin, V.V. Shereshovets, ´Formation of Hydrotrioxides During Ozonation of Hydrocarbons on Silica Gel. Decomposition of Hydrotrioxides´, (2000) Journal of Physical Organic Chemistry, 13 (2), 87
  46. M. Ganiev, Q. K. Timerghazin, A. F. Khalizov, N. M. Andriyashina, L. B. Volodarsky, V. V. Shereshovets, G. A. Tolstikov. ´Complexes of Chlorine Dioxide with Nitroxyl Radicals´. (1999) Tetrahedron Letters, 40 (25), 4737
  47. V.I. Sokolov, V.V. Bashilov, Q.K. Timerghazin, E.V. Avzyanova, A. F. Khalizov, N.M. Shishlov, V.V. Shereshovets. ´EPR Study of the Reaction of C60 with Chlorine Dioxide: Experimental Evidence for the Formation of C60 Radical-Cation´. (1999) Mendeleev Communications, (2), 54
  48. A. F. Khalizov, S. L. Khursan, V. V. Shereshovets. ´Dialkyltrioxides´ (a review). (1999) Kinetics and Catalysis (Russian), (2), 194
  49. A. F. Khalizov, S. L. Khursan, V. V. Shereshovets. ´Kinetics of radical decomposition of di(tert.butyl)trioxide´. (1999) Russian Chemical Bulletin, (1), 61
  50. N. N. Kabalnova, A. F. Khalizov, V. V. Shereshovets, L. A. Baltina, Yu. I. Murinov, G. A. Tolstikov. ´Interaction of singlet oxygen with biomolecules. 2. 1O2 quenching by glicirrhizic acid derivatives´. (1998) Reaction Kinetics & Catalysis Letters, 63 (2), 279
  51. E. V. Avzyanova, Q. K. Timerghazin, A. F. Khalizov, S. L. Khursan, L. V. Spirikhin, V.V. Shereshovets, ´Adamantylhydrotrioxide Formation During Dry Ozonation of Adamantane´. (1997) Mendeleev Communications, (6), 227
  52. S. L. Khursan, A. F. Khalizov, V. V. Shereshovets. ´Induced decomposition of di(tert.butyl)trioxide´. (1997) Russian Chemical Bulletin, 46, 884
  53. Q. K. Timerghazin, E. V. Avzyanova, A. F. Khalizov, N. N. Kabalnova, V. V. Shereshovets. ´Chemiluminescence during Ozonation of Adamantane on Silica Gel´. (1996) Reaction Kinetics & Catalysis Letters, 58 (2), 403–406
  54. A. F. Khalizov, O. N. Makarova, S. L. Khursan, V. V. Shereshovets. ´ Effect of the medium on the decomposition rate of di-t-butyl trioxide´. (1995) Reaction Kinetics & Catalysis Letters, 54 (2), 427
  55. A. F. Khalizov, S. L. Khursan, V. V. Shereshovets. ´Effect of medium on the rate-constant of decomposition of di(tert-butyl)trioxide´. (1995) Russian Chemical Bulletin, 44 (6), 1127
  56. S. L. Khursan, V. V. Shereshovets, N. M. Shishlov, A. F. Khalizov, V. D. Komissarov. ´ESR studies of radical break-down for di-(tert.butyl)-trioxide´. (1994) Reaction Kinetics & Catalysis Letters, 52, 249
  57. S. L. Khursan, V. V. Shereshovets, A. F. Khalizov, A. I. Voloshin, V. D. Komissarov, V. P. Kazakov. ´Chemiluminescent studies of the kinetics of decomposition of di-(tert.butyl)-trioxide´. (1993) Reaction Kinetics & Catalysis Letters, 51 (2), 389–392
  58. S. L. Khursan, V. V. Shereshovets, A. F. Khalizov, A. I. Voloshin, V. D. Komissarov, V. P. Kazakov. ´Chemiluminescence in the thermal decomposition of di(tert.butyl)trioxide´. (1993) Russian Chemical Bulletin, 42, 1968
  59. A. F. Khalizov, S. L. Khursan, V. V. Shereshovets, V. D. Komissarov. ´Chemiluminescence in the decomposition of di(tert.butyl)trioxide (CH3)3COOOC(CH3)3´. (1993) Russian Chemical Bulletin, 42 (9), 1609 

Citations